BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm
نویسندگان
چکیده
منابع مشابه
BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm
Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. A DCOP problem is a problem where several agents coordinate their values such that the sum of the resulting constraint costs is minimal. It is often desirable to solve DCOP problems with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB...
متن کاملAn Asynchronous Branch-and-Bound DCOP Algorithm
Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. A DCOP problem is a problem where several agents coordinate their values such that the sum of the resulting constraint costs is minimal. It is often desirable to solve DCOP problems with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB...
متن کاملP-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm
Distributed constraint optimization problems enable the representation of many combinatorial problems that are distributed by nature. An important motivation for such problems is to preserve the privacy of the participating agents during the solving process. The present paper introduces a novel privacy-preserving branch and bound algorithm for this purpose. The proposed algorithm, P-SyncBB, pre...
متن کاملGeneralizing ADOPT and BnB-ADOPT
ADOPT and BnB-ADOPT are two optimal DCOP search algorithms that are similar except for their search strategies: the former uses best-first search and the latter uses depth-first branch-and-bound search. In this paper, we present a new algorithm, called ADOPT(k), that generalizes them. Its behavior depends on the k parameter. It behaves like ADOPT when k = 1, like BnB-ADOPT when k = ∞ and like a...
متن کاملComputational Experiments with an Asynchronous Parallel Branch and Bound Algorithm
In this paper we present an asynchronous branch and bound algorithm for execution on an MIMD system, state sufficient conditions to prevent the parallelism from degrading the performance of this algorithm, and investigate the consequences of having the algorithm executed by nonhomogeneous processing elements. We introduce the notions of perfect parallel time and achieved efficiency to empirical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2010
ISSN: 1076-9757
DOI: 10.1613/jair.2849